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J Sañudo† and A F Pacheco‡
† Departamento de Fı́sica, Universidad de Extremadura, 06071 Badajoz, Spain
‡ Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 12 April 2000, in final form 30 June 2000

Abstract. The spatial distribution of electrons inside an empty spherical shell with an
impenetrable wall is studied by means of the Thomas–Fermi model. The general solution is
expanded in a perturbative series and the explicit analytic solution for the first three terms of the
series is provided.

1. Introduction

Due to its simplicity and elegance, the Thomas–Fermi (TF) model is an almost obligatory first
step in atomic physics courses prior to more accurate descriptions of the atomic structure. In
addition to the standard TF solutions for the neutral atom and the positive ions, the TF model
may also be used to study related problems, of academic interest, involving electron density
profiles with spherical symmetry. In this context, in [1], the spatial distribution of N � 1
non-relativistic electrons placed inside an empty spherical impenetrable shell of radius a, at
zero temperature, was analysed. In that work, using arguments of balance of pressures, it was
concluded that the electron density is concentrated in a thin layer of characteristic thickness δ
near the wall. The estimate for δ is

δ ≈ a
3/5
B a2/5N−1/5 (1)

where aB is the Bohr radius.
Here we analyse the fully fledged TF problem and provide an explicit analytical solution

for the resulting differential equation. In section 2 we set the TF equation in the appropriate
form for this problem, expand the solution in a perturbative series and obtain the specific
differential equation for each order. In section 3, the explicit solutions are obtained. Finally,
in section 4 the results are shown and commented on.

2. The Thomas–Fermi equation

The usual TF equation for the neutral atom is derived from three assumptions (see [2]):

(a) the electron density, n, and the electrostatic potential, φ, are related by Poisson’s equation;
(b) the equation of state of the electron cloud is that of a Fermi gas at zero temperature; and
(c) the condition of hydrostatic equilibrium is fulfilled throughout the electron distribution.
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The resulting equation is

χ̈(x) = χ3/2(x)/x1/2 (2)

where x is the distance from the origin, r , measured in b units

r = bx b = κaBN
−1/3 (3)

with κ = (3π)2/3/27/3 and χ(x) is a function related to n by

n = κ ′(N2/a3
B)(χ/x)

3/2 (4)

with κ ′ = 32/9π3. In our notation, a dot over a function indicates a derivative with respect to
the argument.

In the neutral atomic case, the existence of the pointlike positive charge at the origin forces
χ(0) = 1 as a first boundary condition. The second boundary condition can be obtained by
imposing the neutrality of the system, i.e. the total number of electrons, N , is equal to the
nuclear charge.

Here, the description of N electrons inside the empty shell of radius a leads obviously
to a TF equation equal to equation (2), with equations (3) and (4) having exactly the same
meaning. The boundary conditions are, however, different. Here, as n(0) is finite, we have

χ(0) = 0. (5)

The normalization condition extends only to the radius a of the shell, i.e.
∫ a

0 n(r) dr = N. In
dimensionless units this relation adopts the form∫ xa

0
χ3/2(x) x1/2 dx = 1.

Using equation (2) and integrating by parts, we obtain

xaχ̇(xa)− χ(xa) = 1. (6)

Note that

xa ≡ a/b = κ−1(a/aB)N
1/3 (7)

is the value of a expressed in b units.
It is physically clear that for a large N , almost the whole volume of the cavity will be

empty and the electron distribution will be concentrated in the vicinity of the wall. For this
reason, it is more convenient to move our coordinate frame, up to now on the origin, to the
shell radius, i.e. to r = a. Thus we define the y coordinate as

x ≡ xa − y. (8)

Thus y is the radial distance from the wall towards the centre measured in b units. In terms of
y equation (2) is

χ̈(y) = (χ3/2(y)/x1/2
a )(1 − y/xa)

−1/2 (9)

and the two boundary conditions read

χ(y = xa) = 0 (10a)

−xaχ̇(y = 0)− χ(y = 0) = 1. (10b)
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Now it is convenient to perform the following change of scale:

y ≡ x2/5
a z (11a)

χ(y) ≡ ψ(z)

x
3/5
a

(11b)

which converts equation (9) into

ψ̈(z) = ψ3/2(z)/(1 − z/x3/5
a )

1/2
(12)

and converts equations (10a) and (10b) into

ψ(z = x3/5
a ) = 0 (13a)

−ψ̇(z = 0)− ψ(z = 0)/x3/5
a = 1. (13b)

Note that after the rescaling performed in equations (11a) and (11b), the actual length unit
one is working with, d , is given by

a − r ≡ dz d = bx2/5
a = κ3/5a

3/5
B a2/5N−1/5. (14)

In the limit of xa � 1, we define the ‘small’ parameter ε as

ε = 1/x3/5
a . (15)

In terms of ε, we expand ψ(z),

ψ(z) = ψ0(z) + εψ1(z) + ε2ψ2(z) + · · · . (16)

Formally speaking, this development is meaningful for ε � 1 and for z < x
3/5
a . When

this expansion is inserted into equation (12), and the terms of the same order in powers of ε
are compared, we obtain the following equations:

ψ̈0 = ψ
3/2
0 (17)

ψ̈1 = ψ
3/2
0

[
3

2

ψ1

ψ0
+
z

2

]
(18)

ψ̈2 = ψ
3/2
0

[
3

2

ψ2

ψ0
+

3

8

ψ2
1

ψ0
+

3

4

ψ1

ψ0
z +

3

8
z2

]
. (19)

With respect to the first boundary conditions, equation (13a) leads to

ψ(z = x3/5
a ) = ψ0(z = x3/5

a ) + εψ1(z = x3/5
a ) + ε2ψ2(z = x3/5

a ) + · · · = 0

which implies that

ψ0(z = x3/5
a ) = ψ1(z = x3/5

a ) = ψ2(z = x3/5
a ) = · · · = 0. (20a)

With respect to the second boundary condition, equation (13b) leads to

−[ψ̇0(0) + εψ̇1(0) + ε2ψ̇2(0) + · · ·] − ε[ψ0(0) + εψ1(0) + ε2ψ2(0) + · · ·] = 1

which, to be fulfilled at all orders, implies

−ψ̇0(0) = 1 −ψ̇1(0)− ψ0(0) = 0 −ψ̇2(0)− ψ1(0) = 0 . . . . (20b)
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3. The Thomas–Fermi solutions

3.1. Zeroth order

In the lowest order, we have

ψ̈0 = ψ
3/2
0 (21)

ψ̇0(0) = −1 ψ0(z � 1) = 0. (22)

Equation (21) is a nonlinear second-order differential equation. Its solution is obtained by
multiplying both sides by ψ̇0. Thus equation (21) adopts the form

1

2

d

dz
[ψ̇2

0 ] = 2

5

d

dz
[ψ5/2

0 ]

which is readily integrated giving

1
2 [ψ̇2

0 − ψ̇2
0 (0)] = 2

5 [ψ5/2
0 − ψ

5/2
0 (0)].

Now, inserting ψ̇0(0) = −1, and choosing the negative root (the positive root is meaningless),
we have

ψ̇0 = −[
4
5ψ

5/2
0 + 1 − 4

5ψ
5/2
0 (0)

]1/2
.

By separating variables, ψ0 and z, we obtain
∫ ψ0(0)

ψ0

dψ0√
4
5ψ

5/2
0 + 1 − 4

5ψ
5/2
0 (0)

= z.

Finally, imposing the second condition, ψ0 → 0 for z → ∞, we find ψ0(0) = ( 5
4 )

2/5.
This fixes the solution of equation (21) as

ψ0(z) = C0

(q0 + z)4
(23)

with C0 = 400, q0 = (1600)1/5.

3.2. First order

Having obtainedψ0(z), and inserting it into equation (18), we observe thatψ1(z) fulfils a linear
second-order differential equation of Legendre type. The general solution is the sum of the
solution of the homogeneous part of the equation and a particular solution of the inhomogeneous
part. Imposing the fulfilment of the two boundary conditions, we obtain

ψ1(z) = − 5
9C0

(q0 + z)3
+

q0C0

(q0 + z)4
+

B1

(q0 + z)5
(24)

with

B1 = − 16
3

(
4
5

)1/5
C0.

The value of ψ1 at the origin is

ψ1(0) = 8
9

(
4
5

)1/5
. (25)
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3.3. Second order

Now it is necessary to solve equation (19). This is again a linear second-order differential
equation of Legendre type; the solution that fulfils equations (20a) and (20b) is

ψ2(z) = C2

(q0 + z)2
+

C4

(q0 + z)4
+

B2

(q0 + z)5
+

C6

(q0 + z)6
(26)

where

C2 = − 5
81C0 C4 = 32

9 (
4
5 )

1/5C0

C6 = 160
9 (

4
5 )

2/5C0 and B2 = − 173
9

[
32
45

]
( 5

4 )
1/5C0.

4. Results and conclusion

Using equations (4) and (11) we obtain the electron density profile

n(z) = κ ′N2a−3
B x−12/5

a ψ3/2(z) = (72π7)
−1/5

a
−3/5
B a−12/5N6/5ψ3/2(z) (27)

where z is the radial distance to the impenetrable shell measured in d units. The solution
obtained perturbatively is

ψ(z) = ψ0(z) + εψ1(z) + ε2ψ2(z) + · · · .
The function ψ0(z) constitutes the asymptotic solution, and the sum of the other two terms
is its finite-size correction up to second order in ε. The three functions obtained, ψ0, ψ1 and
ψ2, are finite at the origin, have a negative derivative at the origin and tend asymptotically
to zero as functions of z. ψ0 is always positive; ψ1 and ψ2, in contrast, become negative
at a given point, have one minimum and then tend to zero. The three functions are plotted
in figure 1. Note that, strictly speaking, these three functions should fulfil the condition
ψ0(1/ε) = ψ1(1/ε) = ψ2(1/ε) = 0; therefore, the assumption that they vanish at infinity
induces a small error. Examining equations (23), (24) and (26) we realize that from ψ0 there
appears a leading error of fourth order in ε, from ψ1 the error is of order three, and from ψ2

the error is of order two. These individual effects inserted in the perturbative expansion given
in equation (16) produce a leading effective error of order four in ε. As our calculations stop
at the second order in ε they are not affected by these higher-order corrections.

The value of the energy terms, at the leading order in ε, of the TF solution are

V = 1

2
N2 e

2

a
(28)

for the electrostatic energy, and

T = BN9/5 e
2a

3/5
B

a8/5
(29)

with B = 1
24 (60π)2/5, for the kinetic energy. Note that V is the classical result for a surface

charge distribution. For compactness, let us express V and T in Hartree units of energy. Then
for the total energy, E, we obtain

E = V + T = N7/3

2κ
ε5/3

(
e2

aB

) [
1 +

501/5

3
ε

]
. (30)

Thus, we observe that T is one order smaller in ε than V . κ was defined after equation (3).
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Figure 1. Plot of ψ0, ψ1 and ψ2 versus z.

Let us now comment on the thickness of the electron cloud near the wall. The characteristic
thickness emerging from the TF method is the length d of equation (14). This length is
consistent with the δ of equation (1). In terms of ε, we find the neat result

d = aε. (31)

Thus, as a conclusion we will say that from the TF method for this problem a small,
dimensionless, parameter ε emerges which determines the physics of the electron distribution
in the shell, setting a perturbative hierarchy: (a) the leading term of the potential repulsive
energy is the classical electrostatic result for a surface charge distribution; (b) the leading
term of the kinetic energy is, up to a constant, ε times the electrostatic energy; and (c) the
characteristic thickness of the electron distribution near the wall is exactly ε times the radius
of the cavity.
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